INTEGRAL CHARACTERISTICS OF MHD CHANNEL
WITH NONCONDUCTING BAFFLES

I. V., Lavrenttev

The electromagnetic characteristics of an MHD channel with insulated walls, two quite
long electrodes, and nonconducting baffles are obtained for arbitrary magnetic field dis-
trinution law along the channel. Some specific cases of magnetic field and baffle location
specification are examined in detail,

1. We consider a flat channel [x]| <, 0 <y <H with two semi-infinite electrodes pu<x< e, y=0 and
y =H. Into the channel there are introduced n—1 infinitely thin nonconducting baffles whose left ends ex-
tend to infinity,and the coordinates of the right ends are (0, kH/n) (k=1, ..., n—1) {Fig. 1a),

We assume that the electrical conductivity of the medium is constant, the velocity distribution is
given in the form V=(V, 0, 0) (V=const), and the magnetic field is expressed by the relation

B =(0, 0, —B () 1.1)
B(x) =Bb@), b)) >0 fr - — o0

where By is the magnetic field magnitude characterizing the problem. Then, for small magnetic Reynolds
numbers we must solve the following system of eguations and boundary conditions to find the electrical

characteristics of the channel [1]:
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@ =Y U for y =H, p <z <o
09/ 0y =U /[ H for z = o,
@ =Y, U fory =0, p<ax< oo,

9¢/dy=VB(x) on the insulated walls and baffles,
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Here j is the current density, ¢ is the electric potential, and U is the voltage on the electrodes.

If we now introduce the analytic function
. a , d
f(z)=p—|—zq——5%+z£ (1.3)

the problem (1,2) reduces to finding this function, satisfying the boundary conditions: ¢ =0 at the electrodes;
p=VB{x) at the insulated baffles and walls. To solve the posed problem we map conformally the strip

x| <=, 0<y<H with cuts along the baffles onto the upper half-plane of the t=r +iv plane (Fig. 1b) with

the aid of the formula [2]

z=HnnlnT,(¢), T,0)="%l¢+VEeE—1)"+@¢—VE—-1" (1.4)

Tp(t) are the Chebyshev polynomials, In this case the points By and Dy, of the z plane will correspond to
the points (ry, 0) and (74,, 0) of the t plane, where

Tr=cosly, O=— 45 T ) =0 (k=1,...,n0) (1.5)
T = €080y, B, =", ) _ 0 (=1, n—1)

The correspondence of the other points is clear from Fig. 1, and the quantity a is found from the
equation

T, (0) = exp (pnx / H) (1.6)
The analytic function f(z) (1.3) in the region of the complex variable t becomes the analytic function

N L) =p+ iq (1.7)

satisfying the boundary conditions .
fottg) =0, fi(eo) =U/H

D =VB(@on AA, —a<t<a g =00 CA_and 4A,C,a |7 | < » (1.8)
Thus we obtain a mixed boundary value problem for the harmonic function f4, where f{ must have
singularities of the pole type at the points T s corresponding to the ends of the baffles, since at these

points the current density becomes infinite (g = «, while p=VB(x) remains finite). As is done in [3] in
deriving the Keldysh—Sedov formula, it can be shown that the posed problem is solved by the formula

a n—1
VB g (v)b(v)dr VB Tm 1.9
i) = g S T—1 JrHg(t)JrH(g)<7°+m2:’1t—Tm’> a4

lﬂ"

—a

gW)=V{E—a/{ +a), MH=V{E—0a)(+a)

Here we examine that branch of the root which is positive on the segment (q, ). It follows from the
condition f4(Tk) = 0 that the constants v, v satisfy the system of equations

nt (1.10)
Tot D = = —K)@+w)+Fs

m=1

200 Sbw)ctg (0 — 0,) d® (1.11)

g ,
J:—I;Sb(m&)dq‘}, Fy—

o 0

K=U/E,E=HB,V, cos O=1la, cos, = t,/a, b (¥) = bz (§)]

Here K is the load coefficient, In deriving the formula for Fy, we used the identity

1 x—l—lP
oS —cOos stnx\ g

—}—ctgx;qj) | (1.12)

Using the symmetry of the location of the points 7§ and 7], relative to 7 =0 (see (1.5)), and also the
the equality Fi(ry) =—F(Tk), we can show easily that

Yo =(J — Ka (1.13)
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2. To determine the electrical characteristics of the channel we must know the electromagnetic
power developed in the channel and the current flowing to the electrodes. Since in our case the electrodes
are considered to be infinitely long, these quantities will also be infinitely large. On the other hand, such
a channel can be represented as half of a channel with finite (length 2A) but very long electrodes, the cur-
rent I of which equals I=21;, where I) is the current to the part of the electrode of length A of the subject

channel (segment A A" in Fig. 1a) for sufficiently large A /H. Now let us find the current Iy as A i — .
Trom (1.2), (1.3), and (1.7), we have

L Mt s : e 0
%G:S(_£+W®yx:v& Summ—ﬁggmmommTﬂw; 2.1)
it i a

the quantity A is found from the equation

T, (A)=-exp [(A + wnn /| Hl (A — o for AH — ) (2.2)
It follows from (1.9) that
(r +ah i <a-r1 %o b (11) dry L K<T+ a h n N nil (2.3)
BoV - \T a) J (a+n) Ty —T ’t——a) VTz az\TO )
With account for (1.13), (2.3) can be rewritten as
n—1 " 1 _V_ . Zn n—1 .
(r,0) _ I S ] -4 m
plBov VTZ [(K J) m;L\ TFTm GS e/ _COSﬁ + Vrz a EIT_Tm, (2'4)
Yo = T T T
n—X 1 ' 2 ’_)
D = - By, 2.5
m=1 Fk m
n—l T "
| e =F (2.6)
mg—l T Tm f
Let us show that the expression in the brackets in (2.4) can be written in the form
[]=(K— Jﬂ“m (2.7)
Actually
n—1i 1
[1=& DM@ [ ——~
me=1 m
where Mp(7) is a polynomial of degree n, satisfying in accordance with (2.5) the condition Mp(Tg) =
Consequently M (1) = 21""Ty(7),and since
n—1
a7, n— ’
dr(r) n2 ‘H(T_“Tm)
me==1
(2.7) is proved,
Substituting (2.4) into (2.1) with account for (2.7), we obtain
o ¢
—%:@U—K%JrJrkﬁ§bWMx (2.8)

b
where

n—;y a A

2 , dIn T, (r) _ 2 dv _ VE—atdin T, (7)
11——2 Tm S'———‘— CD“R“S V.rz—_‘a‘z"lz_nw‘za(gdﬂ‘b(ﬁ)g (t/ay—cos &
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For large values of A /H

2n2 2, 2
b T wlRe c=F (2.9)

(D=C+dn, Ay =

Here c is the channel characteristic ratio, and ¢ is the inverse of the dimensionless integral re-
sistance of the channel in the case in which the fluid is at rest, which follows from (2.8) if we set V=0,
The dependence of on on i/H, constructed using (2.9), is shown in Fig. 2 for the values n=1, 2, 3, 5, 15,
Now let us examine the integral I;. Since

n

Ao = 3 2o " (2.10)
k=1
then
k. n—1 n
2 dr 2 dt
B 3 = T e F S —————————e
nx ,21 m=le S (r—r1,) (11 V=g 1% 1§1 ¥ (T—7,) YVe—a

This follows from (2.6) and the relations

n
1 1 1 1 1
; R el C y D =0
(r—rm)(t—rk) T — T <‘r—rm r-—rk> k§1 Ty — Tg

Taking the integral and substituting the value of Fy from (1.11), we obtain

n

2 (i — k)sm,ﬂ( b (8) a0 (2.11)

cos , — cos ¢

We obtain the expression for I, similarly:

2 < f (7 — 9)sin b (8) dd _ ¢
12:.7’(1)—%’—1?]:%8 cos F,—cos® n12 2 (e — ")smﬁ’é cosf} —cosﬁ (2.12)
=1 §

Substituting (2.11) and (2.12) into (2.8) with account for (1.23), we find the final expression for the
current taken from the electrodes

e

A
L =G — KD 4B, Gy=Nt S b(z)dz (2.13)
2

B = nizgarcsm—b(r)dlnT (%) (2.14)

3. Now let us find the electromagnetic power developed in the channel

At H Ap
P,=2{ @& day®xjv=20rB2H { @)z
—c0 0 e —0Q

—26VB,U \ b(2)dz+25VB, SS b(z) ¢ (x)dz (3.1)
w
Here the index S denotes integration over the insulated walls and both sides of the baffles, and ¢ (x)
in this integral is found from the relation

9@ =—5 —ix | 4@ 0dnT.@ (3.2
T (x)

Substituting (3.2) into (3.1}, we can obtain

S_ i VB“Sb(ﬁ)J(ﬁ)dlnT (), .3)
S
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where a
Jo)= § g(v,00dInT, ()

acos §
—1
(5,0 (+a(J—K) Vaz_r2 b($)dd 1 ___)
1BOV I T i + OS'I:—-—acosﬁ Va—r (T°+n§1'c—~r
Using (2.5)-(2.7), we have
n—1 a 3 n
2 dln Ty !t Csi _b(#)d¥
J@)=n —K)0— 37, \ ﬁ:—)_:? ———EgsmﬁdlnTH(ﬁ)Scosﬁ_cos - (3.4)
m=1 acos & m 0 0

Just as was done with the integral I, of Section 2, it can be shown that the second term in the right
side of the expression for J(#) equals

n '
2 F k dg’
- cos 4" — cos &,

=1

=

CeP

Using (2.10), the last term in (3.4) together with the expression ndJ can be represented as

8 T n
1 , , sin? & :
_H-S dé S d8’d (% )k§ [1 + {cos & — cos ") (cos & — cos T;) ] (3.5)
0 0 =
The expression in the brackets in {3.5) may be written as
sin? 9 sin® 9,
[ 1= Tos® —cos ©,) (cos & — cos ¥) T (cos 8" — cos #,) (cos & — cos §)
Then (3.5) takes the form
S o n
1 b(¥)sin®'dInT, a4’
_:nt_gdﬁ S cosﬁ-—cosﬁ Z S cos §" —cos ¥,
0 0 k=1
Thus we obtain for J@#)
5 ]
Ysind' dln Ty (B
7 () = —nko 4+ (ap { LELIY 0T O) (3.6)
0 0

Substituting (3.6) into (3.3) with account for (1,12), (2.14) and altering the order of integration, we
find

{ - - Ko~ n2ﬂ3gdﬁlgb(.;)d1nfnﬁ_2']2§ b(2) et )

Substituting this expression into (3.1), we obtain the final formula for the power developed:

P, = oE? [c (G, — KG;) — KB, + Bl

=g (b G=g | e .7
® o
w2\ r@e _gﬁ’gdﬁ[gb(g;)dmg;fg" (%) o (%)
—20 o [

We note that a singular integral with Hilbert kernel appears in the expression for 8,. This integral
can be calculated for an arbitrary function b(i/ﬁ) by expanding the function

&\ din Ty (8/2
1@ = b () AR
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a4 7 1 into a Fourier series. Noting that f(») is an odd function of ¢, we have
02 < 20,/ o
N F(#) = S b, sinmo, bm=?Sb(—2—)sinm'&dlnTn(—2—) (3.8)
g1 ] m==1 0
a
! P g i3 Substituting (3.8) into (3.7) and performing the integration, using the
relation [2]
Fig. 4
on ,
S sin m9’ ctg i ;ﬁ a9’ = 21 cos mY
0
we obtain
2 ¢ 8 N1 Cp?
b= | B@)dr — i 3 (3.9)
o =1
where

Yom
Cn={ 0(8)sin2médInT,(®)

0

In certain particular cases of magnetic field b(x) specification, the singular integral in 8, can be
calculated directly (see Section 6). Now let us examine some particular cases of baffle location and mag-
netic field distribution downstream of the electrodes.

4, If the channel has no baffles (n= 1), then (2.9), (2.14), (3.9) take the form

Yon
D=c+ 21’;2 , B‘=R42' S b () ctg P dp (4.1)
0
b =ble(W)],  sin=exp(nz/H)
w o Yom
BF}}T S bZ(x)dx—_::T 21:‘1,1;_2, Ap = S b (V) ctg ¥ sin 2mp dip
= 0

-9

Formulas (4.1) coincide with the corresponding formulas of [4], obtained by mapping the upper half-
plane v >0 onto a rectangle and subsequent solution of the problem by the Fourier method. For a channel
with a single pair of baffles (n=2), the formulas for 8, and 3, coincide with the corresponding formulas

of [5].
5. Baffles are inserted right up to the electrode zone (1 =0). In this case it follows from (2.9) that

m=c+21n2 (5.1)

ni

This coincides with the corresponding expression of [6]. Since in this case b(né) has the period
7/n{Tp(0) =cos nd), it follows from (2.14) that
‘/7“ 1/

=t S (5 —e)b(ne)tg (n8) d (n0)=

2 (rmvegvar=te (5.2)

0 L}
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Similarly, from (3.9)
By =Ba/n (5.3)

Here f, and B84, are the corresponding coefficients for the channel without baffles of width H/n. This
result is obvious. In fact, just as was done in [6] for the case V=0, it can be shown that the electric field
distribution pattern has the period H/n in y and the straight lines connecting the right ends of the left-
hand baffles with the left ends of the corresponding right-hand baffles are equipotentials which divide the
entire channel into n identical subchannels of width H/n, connected in series electrically; hence (5.2) and
(5.3) follow.

6. Let us consider as an examplethe simplest case of magnetic field specification downstream of
the electrodes
1 for O0<a<lp
bo={ o TS (6.1)

From (2.14) after integration by parts we obtain

9

\

Bx=—%pi-— n4n2 SlnTn(ﬁ)dﬁ(\ =arccos..:;_) (6.2)
0

Further, using the known formulas for the calculation of the limiting values of the Cauchy type in-
tegral, we obtain from (3.7)
8 n 1]
4 V‘Eg_—_—iS]n2Tn(‘f))dﬂ 4 2 Fy S In T, (8)dd (6.3)

2 2 A
Bz———H —-arcsin —— + \\1 —aresn—- B+ i a?cos?d —1 = nrd a  YcosG—cosdy
o

k==

-

0
Figure 3a, b shows the coefficients 8 and 54 as a function of p/H for different values of n, calculated
using (6.2) and (6.3).

7. From (6.2) and (6.3) we can obtain the expression for the Joule losses Q in the case in which all
the channel walls are insulated, passing to the limit as pu/H— = (@—=«). In this case

Q = oE® (7.1)
where
) 2 e A 8 &
p= lim (gg_gl_)zri[?\%__nzn3 SSn(a:) 10T (&) dez
w/H—0 e

@ 0

n -

|7 | Arcth |, |
Suie)= 2
k=1

(7.2)

The values of 7| are given by (1.5). Figure 4 shows # as a function of the number of baffles, cal-
culated using (7.2). For large valuesofn (n>15)8 =2 In 2/nm, We note that for n=1 and n=2 (7.2) co-
incides with the corresponding expressions obtained in [7, 8], with the sole difference that the value of 8
from (7.2) is twice as large as the value of [7, 8], since the total losses at the inlet to and exit from the
magnetic field were taken into account.

8. If the constant-magnitude magnetic field is removed to the distance p + Ap downstream from the
electrodes, where Ay >1.3 H/n, and then the field decays, following any law, the values of the coefficients
By and 8, are found as follows. To find the coefficient 8, we can assume that the field is constant along
the entire channel; then, as shown in [6], the expression for the dimensionless current has the form:
(1—K)®, Comparing this last expression with (1.26), we find that in the present case B4=%-c. The co-
efficient

B, = @ — ¢ + nfy

is found similarly.

Here 8, are the dimensionless Joule losses in the subchannel of width H/n with insulated walls in
the region of magnetic field variation (at the distance p + Ay downstream from the electrodes), whichc inbe
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found using the formulas obtained in [9]., Thus, from the viewpoint of obtaining the maximal removable
power and maximal efficiency the following channel and magnetic field geometry will be optimal: x >1,3H,
Ap>1.3H/n. In this case the end zones make maximal contribution to the removable power, and the Joule
losses in the zone of nonuniformity of the magnetic field are minimal. (The latter statement is valid only
within the framework of two-dimensional theory. As shown in [11], in accounting for the three-dimen-
sional nature of the problem, there arise additional Joule losses which increase with increase of the mag-
netic field removal downstream from the electrodes, which is associated with closure of the currents through
the boundary layer in the plane of the channel cross section.)

Thus we obtain the following expressions for the power P;=UI, which can be taken from the electrodes
and is developed in a channel of electromagnetic power P, and electromagnetic efficiency 7:

P, =oE*K [cG, — K® + B,l, Py =cE?[c (G, — KG,) — KB, + B,]

n-gr K=HEEE

Here R is the load resistance. Expressions (2.14) and (3.9) for the coefficients 8, and 3, are only
valid, strictly speaking, for the channel with infinitely long electrodes. However, in practice these formu-
las can be used to calculate the end effect in channels with finite but quite long electrodes, when the mutual
influence of the processes at the entrance to and exit from the channel can be neglected. For channels
without baffles this holds for any ¢ >1 [4]. Moreover, introduction of baffles into the channel reduces the
scale of the electric field nonuniformity zone at the entrance to and exit from the channel, and therefore
we can assume that the formulas obtained for 34 and 8, are clearly valid for channels with ¢ > 1.

In conclusion, we note that all the formulas obtained above are valid for the channel operating in
other (pump, decelerator) regimes, as well as in the generator regime [10].
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